resistance at ca. **15** K. Below this temperature, a sharp decrease of the resistance is observed down to **2** K. Upon heating again the samples exhibit reversible behavior in the low-temperature range, but hysteresis is observed in the insulator regime. The temperature of the resistance maximum is sample dependent (from **9** to **25 K),** and this may be due to order-disorder transitions in the cation or subtle changes in the stoichiometry. However, the overall behavior is reproducible and has been observed for more than six samples. This behavior is also reminiscent of that observed at higher temperatures for some samples of the superconducting κ -(BEDT-TTF)₂[Cu(NCS)₂] phase.¹²

Articles

Additional work is in progress *80* **as** to **better** characterize the new molecular metal $(NHMe_3)_{0.5}$ [Ni(dmit)₂] and elucidate its properties (sample dependence, nature of both transitions, pressure effects, etc.). However, these promising preliminary results open a new area of investigation on (NH_wMe_{4-w}) _x[M(dmit)₂] systems with different *y* values **as** well **as** with different metals, M; for example, parallel studies on such **systems** with M = Pd and Pt are underway and will be reported shortly.

Acknowledgment. This work is sponsored by the Programme Interdisciplinaire de Recherche sur les Matériaux (PIRMAT) of CNRS, under ATP Contract Supraconducteurs *88* **89N83/0231.** C.T. is a postdoctoral vestigaciones Cientificas (CSIC). (12) Urayama, H.; Yamochi, H.; Saito, G.; Nozawa, K.; Sugano, T.;
Kinoshita, H.; Sato, S.; Oshima, K.; Kawamoto, A.; Tanaka, J. Chem. fellow, sponsored by the Spanish Consejo Superior de In-

Structural, Chemical, and Physical Properties of Rare-Earth Metal Rhodium Carbides $LnRhC_2$ **(** $Ln = La$ **,** Ce **, Pr, Nd, Sm)?**

Rolf-Dieter Hoffmann, Wolfgang Jeitschko,* and Ludger Boonk

Anorganisch-Chemisches Institut, Universitat Miinster, Wilhelm-Klemm-Strasse 8, 0-4400 Miinster, West Germany

Received March 24, 1989

The title compounds were prepared by arc melting and subsequent annealing. LaRhC₂ and CeRhC₂ melt congruently, while the others are formed by peritectic reactions. LaRhC₂ and CeRhC₂ crystallize melt congruently, while the others are formed by peritectic reactions. LaRhC₂ and CeRhC₂ crystallize
with a tetragonal structure of space group $P4_3$ (and $P4_1$), which was determined from single-crystal X-ray
data parameters). PrRhC₂, NdRhC₂, and SmRhC₂ crystallize with the orthorhombic CeNiC₂ type structure, which was refined from single-crystal X-ray data of SmRhC₂ (space group $Amm2$, $a = 358.91$ (6) pm, $b = 469.29$ (7) Cz pairs with C-C distances of **139** *(2)* pm (CeRhCz) and **134 (1)** pm (SmRhCz), thus indicating double bonds. The hydrolyses with hydrochloric acid yield mixtures of methane, ethane, propane, and the various isomers of butane, pentane, and hexane but little $(LaRhC_2)$ or no $(SmRhC_2)$ unsaturated hydrocarbons. $LaRhC_2$ is diamagnetic at room temperature, while the carbides $LnRhC_2$ (Ln = Ce, Pr, Nd) show Curie–Weiss behavior with magnetic moments corresponding to those of the trivalent rare-earth metal ions. SmRh C_2 is Van Vleck paramagnetic. The samples of LaRhC₂ and CeRhC₂ are semiconducting, while those of PrRhC_2 and NdRhC_2 show metallic behavior. The crystal structures and properties of these carbides are discussed.

Introduction

Because of their importance to the nuclear reactor industry, the ternary **systems** of the actinoids with transition metals and carbon have been studied for some time, and several ternary carbides were reported.¹ The corresponding rare-earth transition-metal carbides are of interest because of their potential as superconductors and ferromagnets. Their exploration **has begun** more recently.

These carbides have the structural characteristics of intermetallics with high coordination numbers for all atoms. In the combinations with the early transition metals and in carbides with low carbon content, the carbon atoms

are usually isolated from each other, while C_2 pairs are found frequently in ternary carbides with the late transition metals. Thus isolated carbon atoms were found in the structures of UMoC_{2} , $^{2}\text{URu}_{3}\text{C}_{1-x}$, $^{3}\text{U}_{2}\text{IrC}_{2}$, $^{4}\text{Ce}_{2}\text{Ni}_{22}\text{C}_{3}$, $^{5}\text{}$ $Gd_2Fe_{14}C^{6,7}$ La $Mn_{11}C_{2-x}$,⁸ $Pr_2Mn_{17}C_{2-x}$,⁹ $Ho_2Cr_2C_3$,¹⁰

Lett. **1988, 55-68.**

^{&#}x27;Dedicated to Professor Reginald Gruehn on the occasion of his 60th birthday.

⁽¹⁾ Holleck, H. J. Nucl. Mater. 1984, 124, 129.
(2) Cromer, D. T.; Larson, A. C.; Roof, R. B. Jr. *Acta Crystallogr.* 1964, **17, 272.**

⁽³⁾ Holleck, H.; Kleykamp, H. *J.* **Nucl. Mater. 1970, 35, 158. (4) Bowman, A. L.; Amold, G. P.; Krikorian, N. H. Acta Crystallogr.**

⁽⁵⁾ Bodak, 0. I., Marusin, E. P.; Fundamenekii, V. S.; Bruskov, V. A. 1971, B27,1067.

⁽⁶⁾ Oesterreicher, H.; Spada, F.; Abache, C. Mater. *Res. Bull.* **1984,19,** *Sou.* **Phys.** *Crystallogr.* **1982,27, 657. 1069.**

⁽⁷⁾ Gueramian, M.; Bezinge, A.; Yvon, K.; Muller, J. *Solid* **State** *Commun.* **1987,64,639.**

Table I. Guinier Powder Patterns of LaRhC₂ and PrRhC₂^c

LaRhC ₂					PrRhC ₂				
hkl	$Q_{\rm c}$	Q_{o}	$I_{\rm c}$	I_{o}	hkl	$Q_{\rm c}$	Q.	$I_{\rm c}$	I_{o}
101	678)		$\bf 17$		011	680	680	17	$\mathbf m$
004	681 $\,$	681	$25 \}$	s	100	738		\leq 1	
103	1018	1018	89	VS	002	914	913	20	$\mathbf m$
110	1270	1270	23	${\bf m}$	111	1417	1416	100	VS
111	1312)	1314	75 ≱	VS	102	1652	1652	24	$\mathbf m$
104	1316f		100 S		020	1804	1803	20	$\mathbf m$
112	1440	1439	99	VS	013	2507	2507	25	$\mathbf m$
113	1652	1653	27	$\mathbf m$	120	2542		1	
105	1698	1697	87	V8	022	2718	2719	$\bf{12}$	$\mathbf m$
114	1950	1950	4	vw	200	2951	2952	${\bf 12}$	$\mathbf m$
200	2539	2540	8	W	113	3245	3245	6	$\pmb{\mathrm{w}}$
201	2581	2584	65	VS	122	3456	3456	17	$\mathbf m$
107	2719	2723	33 }	8	211	3630	3633	4	VW
008	2723 S		17 ₅		004	3655		\leq 1	
203	2922	2923	21	$\mathbf m$	202	3864	3865	6	w
211	3216	3217	4 _l	VW	031	4288	4289	3	vw
204	3219 S		1 S		104	4392	4391	$\bf{12}$	$\bf w$
212	3343	3342	$\bf{32}$	s	220	4755	4753	11	$\pmb{\mathrm{w}}$
117	3354 1	3354	5	$\mathbf m$	131	5025	5025	17	$\mathbf m$
108	3357 $\sqrt{ }$		18 \int		213	5457	5454	17	$\mathbf m$
213	3556	3555	18	vw	024	5459		<1	
214	3854		4		222	5668	5668	10	w
118	3992	3994	4	vw	033	6115	6115	6	vw
109	4080	4081	6	VW	015	6161		7	
215	4237	4235	23	$\mathbf m$	124	6196	6197	16	$\mathbf m$
207	4623	4621	8	W	204	6605		≤ 1	
216	4705	4705	67	s					
119	4715		11						
221	5120	5117	5	vw					
222	5247	5243	31	$\mathbf m$					
217	5257		16						

^a The diagrams were recorded with Cu K α_1 radiation. The *Q* values are defined by $Q = 100/d^2$ [nm⁻²]. For the intensity calculations the positional parameters of CeRhC₂ and SmRhC₂ were used. Very weak reflections with $I \leq 3$ were omitted in the table of LaRhC₂. Observed intensities **Z,** are abbreviated **as** follows: va, very strong; **a,** strong; m, medium; w, weak; vw, very weak.

 $\rm YCoC,^{11}~UCr_4C_4,^{12}~Tb_2Mn_{17}C_{3-x},^{13}~U_5Re_3C_8,^{14}~Pr_2ReC_2,^{15}$ and UW₄C₄.¹⁶ Isolated carbon atoms together with C_2 pairs occur in the structures of U_2NiC_3 ,¹⁷ $La_2Ni_5C_3$,¹⁸ $La_{12}Re_5C_{15}$,¹⁹ $Er_{10}Ru_{10}C_{19}$,²⁰ and $U_2Cr_2C_5$.¹⁶ Solely carbon pairs were found in the structures of $CeNiC₂²¹$ and the isotypic compounds $\mathrm{DyCoC_2^{22}}$ and $\mathrm{DyNiC_2^{22}}$ in $\mathrm{CeCoC_2^{23}}$ thes and isotypic $\rm NdCoC_{2},^{24}$ in $\rm ScCoC_{2}^{25}$ and isotypic $\rm UCoC_{2}^{-26}$ in Er_2FeC_4 ,²⁷ and in \widetilde{Sc}_3CoC_4 .²⁸ We have recently reported

- (8) Jeitachko, W.; Block, **G.** *Z. Anorg. Allg. Chem.* **1985,528, 61. (9)** Block, G.; Jeitachko, W. *Znorg. Chem.* **1986,25,279.**
- **(10)** Jeitachko, **W.;** Behrens, R. K. *Z. Metallkde.* **1986, 77, 788.**
- **(11)** Gem, M. **H.;** Jeitachko, W. *Z. Naturforsch. B* **1986,** *41,* **946.**
- **(12)** Behrens, R. **K.;** Jeitachko, W. *Monatsh. Chem.* **1987,** *118,* **43.**
- **(13)** Block, G.; Jeitschko, W. J. *Solid State Chem.* **1987, 70, 271.**
- **(14)** Block, **G.;** Jeitschko, W. *Monatsh. Chem.* **1988,119,319.**
- **(16)** Block, **G.;** Jeitachko, W., unpublished resulta.
- **(16)** Behrens, R. **K.;** Jeitachko, W. *Z. Kristallogr.* **1988,182, 19.**
- **(17) Gem,** M. **H.;** Jeitachko, W. *Z. Kristllogr.* **1986, 175, 203.**
- **(18)** Tsokol', **A. 0.; Bodak,** *0.* **I.; Marusii, E. P.** *Sou. Phys. Crystallogr.* **1986,31, 39.**

(19) Block, **G.;** Jeitschko, W. *Z. Kristallogr.* **1987,178, 25.**

- **(20) Hoffmann,** R.-D.; Jeitachko, W. *Z. Kristallogr.* **1987, 178, 110. (21)** *Bodak,* **0. I.;** Marusin, E. P. *Dokl. Akad. Nauk Ukr. S.S.R. Ser.*
- **(22)** Jeitschko, **W.;** Gem, M. **H.** J. *Less-Common Metab* **1986,116,** *A* **1979,12, 1048. 147.**
- **(23)** Bodak, **0. I.;** Maruein, E. P.; Bruakov, V. A. *Sou. Phys. Crystal logr.* **1980,25,366.**
	- (24) Gerss, M. H.; Jeitschko, W., unpublished research.
- **(26)** Maruein, **E. P.;** Bodak, 0. I.; Tsokol', A. *0.;* Baivel'man, M. **G.** *Sou. Phys. Crystallogr.* **198S, 30, 340.**
	- (26) Gerss, M. H.; Jeitschko, W. *Mater. Res. Bull.* 1986, 21, 209.
- (27) Gerss, M. H.; Jeitschko, W.; Boonk, L.; Nientiedt, J.; Grobe, J.; Mijrwn, E.; Leson, A. J. *Solid State Chem.* **1987, 70,19.**

on carbides with the $Er_8Rh_5C_{12}$ type structure,²⁹⁻³¹ which occur with the heavy rare-earth elements. In corresponding samples with the light rare-earth metals we have found the title compounds, which also have C_2 pairs. A preliminary account about the structural properties of these carbides was published earlier. 32 The crystal structures of these five carbides have also been reported recently by Tsokol' et al.³³ These authors have determined the structures from single-crystal X-ray data of tetragonal LaRhC_2 and from X-ray powder data of orthorhombic $NdRhC₂$. We determined the structures of tetragonal $CeRhC₂$ and orthorhombic $SmRhC₂$, both from single-crystal X-ray data. Thus the two studies supplement each other, although both of our structure refinements are more accurate. Here we give a full account of our structural work. In addition we report on the hydrolyses and on the magnetic and electrical properties of these carbides.

Sample Preparation and Lattice Constants

Starting materials were the rare-earth metals (purity **>99.9%),** rhodium powder **(>99.9%),** and graphite (99.5%). Filings of lanthanum and cerium were prepared under paraffin oil. Adherent iron particles were removed by a magnet. The other rare-earth elements were pur-

- **(29)** Hoffmann, R.-D.; Jeitachko, W. *Z. Kristallogr.* **1986,** *174, 85.* **(30)** Hoffmann, R.-D.; Jeitachko, **W.;** Reehuis, M.; **Lee,** St. *Znorg. Chem.* **1989,28,934.**
- **(31)** Lee, St.; Jeitachko, W.; Hoffmann, R.-D. *Znorg. Chem.,* in press. **(32)** Hoffmann, R.-D.; Jeitachko, W. *Z. Kristallogr.* **1988,** *182,* **137.**

⁽²⁸⁾ Tsokol', A. *0.;* Bodak, *0.* **I.; Marusii, E. P.** *Sou. Phys. Crystallogr.* **1986,31,466.**

⁽³³⁾ Tsokol', **A.** *0.;* Bodak, 0. I.; Marusin, E. P.; Zavodnik, **V.** E. *Sou. Phys. Crystallogr.* **1988,33,** *202.*

Carbides with Tetragonal CeRhC₂ and Orthorhombic CeNiC₂ Type Structure^a

compd	struct type	a, pm	$b, \, \text{pm}$	c , pm	V , nm ³
LaRhC.	CeRhC,	396.97 (5)	396.97 (5)	1533.3(4)	0.2416
		398.1(1)	398.1(1)	1535.1(5)	0.2433^b
CeRhC ₂	CeRhC ₂	392.45 (9)	392.45 (9)	1526.0(7)	0.2350
		393.6 (1)	393.6(1)	1535(1)	0.2378^{b}
PrRhC,	CeNiC,	368.22(4)	470.89 (4)	661.70 (6)	0.1147
		368.4 (1)	470.9 (2)	661.9 (2)	0.1148^{b}
NdRhC.	CeNiC。	365.03(4)	470.03 (7)	660.11 (7)	0.1133
		364.8 (1)	469.8(1)	659.7(1)	0.1131°
SmRhC ₂	CeNiC。	358.91 (6)	469.29 (7)	656.7(1)	0.1106
		359.1(1)	469.5(1)	656.6(1)	0.1107 ^b

^a Standard deviations in the positions of the least significant digits are given in parentheses. *Data from ref **33.**

chased in the form of chips under oil. Prior to the reactions the paraffin oil was washed away by repeated treatment with dried methylene chloride under argon. Stoichiometric mixtures with a weight of about **0.5** g were cold pressed to pellets which were reacted in an arc-melting furnace. For the annealing process in evacuated silica tubes **(10-15 days** at 900 "C) the samples were wrapped in tantalum foil. While LaRhC_2 and CeRhC_2 were already present in the arc-melted samples, the other carbides were formed by peritectic reactions during the annealing processes.

The single crystals for the structure determinations were obtained from carbon-deficient samples. In the case of CeRhCz a sample with about **10%** carbon deficiency was used, because the exact composition of this phase was not known at that time. In the case of the incongruently melting carbide $SmRhC₂$ we aimed for a composition where this carbide might be the first crystallization product, and we **used** a melt of the composition 1:l:l. After arc melting these samples were annealed in a high-frequency furnace for about **20-40** min in water-cooled silica tubes at temperatures slightly below the melting temperature.

The products were characterized by metallography and by scanning electron microscopy. Energy dispersive X-ray fluorescence analyses did not reveal any impurity elements heavier than magnesium. Guinier powder diagrams were recorded by using α -quartz ($a = 491.30$ pm, $c = 540.46$ pm) **as** standard. Indices could be assigned on the basis of the cells found by the single-crystal investigations. The identifications of the diffraction lines were facilitated by intensity calculations³⁴ using the positional parameters of the refined structures. *As* examples, the evaluations of the powder patterns of LaRhC_2 and PrRhC_2 are shown in Table I. The lattice constants (Table 11) were refined by least-squares fits.

Chemical Properties

The ternary rhodium carbides $LnRhC₂$, especially the coarse-grained samples, are stable in air for periods of several months. The hydrolysis with diluted hydrochloric acid proceeded at a much smaller rate than it did with $Er₈Rh₆C₁₂³⁰$ A sample of $SmRhC₂$ was hydrolyzed in moderately diluted (1:l) hydrochloric acid at about **60** "C. The emerging gaseous products were analyzed in a gas chromatograph with a flame ionization detector. Besides hydrogen (which was not measured) the following products were determined (in wt %): 34 CH₄, 36 C₂H₆, 12 C₃H₈, 14 $n-C_4H_{10}$, 2 $n-C_5H_{12}$, and traces of $i-C_4H_{10}$, $i-C_5H_{12}$, and various isomers of hexane. **A** similar result was obtained

Table 11. Lattice Constants of Rare-Earth Metal Rhodium Table 111. Magnetic Properties of RRhCz (R = **La-Nd. Sm)"**

compd	$\mu_{\text{exp}}, \mu_{\text{B}}$	$\mu_{\rm eff}$, $\mu_{\rm B}$	θ , K	type of magnetism
LaRhC ₂				diamagnetic
CeRhC ₂ PrRhC ₂	2.4(1) 3.6(1)	2.54 3.58	$-14(2)$ $-13(3)$	antiferromagnetic? antiferromagnetic?
NdRhC ₂	3.7(1)	3.62	0(2)	ferro or antiferro?
SmRhC ₂	1.62(2)	1.66		Van Vleck paramagnetic

^aThe experimentally determined effective magnetic moments per formula unit μ_{exp} are compared with the theoretical effective moments μ_{eff} for the trivalent rare-earth metal ions. The Weiss constants θ were obtained by linear extrapolation of the $1/\chi$ vs T plots. Estimated error limits in the position of the last digit are listed in parentheses.

Figure 1. Reciprocal magnetic susceptibilities of the carbides $LnRhC₂$ ($Ln = Ce$, Pr , Nd , and Sm) as a function of temperature.

with a sample of LaRhC_2 which was hydrolyzed at room temperature in **2** N hydrochloric acid. The small amounts of the emerging hydrocarbons (using hydrogen developed at the sample as a carrier gas) caused the gas chromatographic analysis to be less sensitive: 18 CH_4 , $53 \text{ C}_2\text{H}_6$, 3 C_2H_4 , 11 C_3H_8 , 12 *n*-C₄H₁₀, and traces of C_2H_2 , C_3H_6 , and $n\text{-}C_5H_{12}$. Thus, surprisingly, no unsaturated hydrocarbons were detected in the products of $SmRhC₂$ and very little for LaRhC_2 , even though the carbon atoms in the two (different) structures form C_2 pairs with C-C bond distances typical for double bonds. These results are similar to those obtained with $Er_8Rh_5C_{12}^{30}$ In contrast, large amounts of unsaturated hydrocarbons were detected in the hydrolysis products of U_2NiC_3 ,¹⁷ $UCoC_2$,²⁶ Y_2FeC_4 ,²⁷ and $\mathrm{Er}_{2}\mathrm{FeC}_{4}.^{27}$

Physical Properties

The magnetic susceptibilities of the five carbides were determined with a Faraday balance **as** described earlier.35 Samples of about **10-20** *mg* were measured between **70** and **300** K. The results are summarized in Table 111. The sample of LaRhC_2 was diamagnetic at room temperature $(x = -0.02 \times 10^{-3} \text{ cm}^3/\text{mol})$ and became weakly paramagnetic at lower temperatures $(\chi = +0.06 \times 10^{-3} \text{ cm}^3/\text{mol})$ at **98** K). In view of the semiconductivity of this compound, we conclude it to be diamagnetic. The increasing paramagnetism of the sample with lower temperatures can be ascribed to paramagnetic impurities.

The Ce, Pr, and Nd compounds show Curie-Weiss behavior (Figure **l).** The experimentally determined effective magnetic moments μ_{\exp} agree within the error limits with those of the trivalent rare-earth metal ions calculated from the relation $\mu_{\text{eff}} = g[J(J+1)]^{1/2}$. The negative paramagnetic Curie temperatures of the Ce and Pr com-

^{73.} (35) Jeitschko, **W.;** Reehuis, M. *J. Phys. Chem. Solids* **1987,48,667.**

type structure), $PrRhC_2$, and $NdRhC_2$ (CeNiC₂ type) as a function of **temperature. The absolute values are estimated to be correct only** within **a factor of 3.** For **comparison the specific resistivities of some metals are also plotted.**

pound are compatible with antiferromagnetic **or** ferrimagnetic order at lower temperatures. Our experimental setup was not suited to verify this.

The susceptibility of the Sm compound is typical for a Van Vleck ion. The theoretical effective moment of μ_{eff} $= 1.66 \mu_{\text{B}}$ calculated from Van Vleck's formula³⁶ for $T =$ 300 K with a screening constant of $\sigma = 34$ agrees well with the experimentally determined magnetic moment μ_{exp} = 1.62 (± 0.02) μ_B calculated from the relation μ_{exp} $2.83(\chi T)^{1/2} \mu_{\rm B}$

The electrical conductivities of several carbides were determined with a four-probe technique **as** a function of temperature. Irregularly shaped pieces of the crushed arc melted, and annealed buttons with a size of about **0.5 X** 0.5×1 mm³ were contacted with four copper filaments by using a well-conducting silver epoxy cement. **A** constant alternating current was applied at two contacts, while the voltage difference was measured between the other contacts. Because of the irregular shapes of the samples the absolute values of the conductivities are estimated to be correct only within a factor of 3. The relative values for one sample at different temperatures are much more reliable. Figure **2** shows the results. For comparison the specific resistivities of some metals taken from the literature3' are also plotted. The electrical resistivities of the two CeNiC₂ type carbides $PrRhC_2$ and $NdRhC_2$ increase with increasing temperature, thus indicating metallic behavior. The resistivities of LaRhC_2 and CeRhC_2 (both with $CeRhC₂$ type structure), however, show the inverse behavior as is typical for semiconductors. **A** second sample

Figure 3. Resistivity of semiconducting LaRhC₂. The activation energies E_a were calculated from the linear portions of the log ρ **vs** $1/T$ **plot.**

of LaRhC_2 was measured over a larger temperature range (Figure **3).** From the slopes of the two linear portions of the $\log \rho$ vs $1/T$ plot we calculated the activation energies E_a according to the equation $\rho = \rho_0 \exp(E_a/2kT)$. The values of $E_a = 0.018 \text{ eV}$ and $E_a = 0.032 \text{ eV}$ thus obtained are very small and probably correspond to impurity levels, while the intrinsic gap may be larger.

Some words of caution seem to be appropriate at this point. The semiconducting behavior of the La and Ce compounds and the metallic conductivity of the **Pr** and Nd compounds correlate with the different structure **types** and the diamagnetism of the La compound. However, the electrical conductivity could be dominated by foreign material at the grain boundaries and may be different in the La and Ce compounds which melt congruently while the other carbides are formed by peritectic reactions. Metallographic examinations showed that the La and Ce samples consist of large grains with no visible second phase material at the grain boundaries (There were minor inclusions of second-phase material within the grains, which should not cause problems with the conductivity measurements. These impurities were not visible on the Gunier films.) The Guinier **films** of the annealed samples of $PrRhC₂$ and $NdRhC₂$ used for the electrical conductivity measurements showed minor amounts (about 10%) of the cubic Laves phases $\mathrm{PrRh}_2{}^{38}$ and $\mathrm{NdRh}_2{}^{39}$ which are certainly metallic conductors. Metallographic examination of the $NdRhC₂$ samples showed that this second-phase material was present in well-crystallized **grains** and not in any visible amounts at the grain boundaries of the ternary carbide. Nevertheless, in view of the relatively low absolute values of the electrical conductivities of $PrRhC_2$ and $NdRhC_2$, we hold the semiconducting behavior of $LaRhC_2$ and $CeRhC₂$ to be better established than the metallic behavior of the other carbides.

Crystal Structures of CeRhC₂ and SmRhC₂

The single crystals of $CeRhC_2$ and $SmRhC_2$ used for the structure determinations had been grown in the carbon-

⁽³⁶⁾ Van Vleck, J. H. *The Theory of Electric and Magnetic Suscep-* **(37) Landolt-BBrnstain,** *Zahlenwerte und Funktionen,* **6th ed.;** *tibilities;* **Oxford University Press: London, 1932; p 248.**

Springer: Berlin, 1959; Vol. II/6.

⁽³⁸⁾ Compton, V. B.; Matthiae, B. T. *Acta Crystallogr.* **1969,12,651. (39) Smgh, P. P.;** Raman, **A.** *Met. Trans.* **1970,1,233.**

deficient samples, which were heat treated slightly below the melting points **as** described before. The crystals were isolated from the samples by selective hydrolyses which attacked the material at the grain boundaries faster than the crystals of the ternary carbides.

The crystals were investigated in Buerger and Weissenberg cameras. Those of CeRhC₂ had the Laue symmetry **4/m.** The only extinction condition (reflections *001* were observed only with $l = 4n$) led to the two enantiomorphic space groups $P4_1$ (no. 76) and $P4_3$ (no. 78). Crystals of both space groups can be expected in a polycrystalline sample. The structure refinements showed that the crystal used for the structure determination had space group P_{43} . With $Z = 4$ formula units/cell the calculated density is 7.55 g/cm^3 . The isotypy of $SmRhC_2$ with Ce- $\text{NiC}_2^{\,21}$ was recognized at an early stage of our investigation. The structure determination confirmed the space group Amm2 (no. 38). With $Z = 2$ formula units for the centered cell the calculated density is **8.33** g/cm3.

Intensity data were recorded on a four-circle diffractometer at room temperature with graphite-monochromated Mo *Ka* radiation, a scintillation counter, and a pulse-height discriminator. Background scans were taken at both ends of each $\theta/2\theta$ scan. The scanning rates were optimized by fast prescans. Empirical absorption corrections were made from ν -scan data. The crystal of $CeRhC₂$ (with corresponding values for SmRhC₂ in parentheses) had the dimensions $7 \times 8 \times 20 \mu m^3$ ($7 \times 10 \times 10$ 20 μ m³). The linear absorption coefficient is μ (Mo K α) $= 260$ cm⁻¹ (167 cm⁻¹). The ratio of the highest to the lowest transmission was **1.08 (1.18). A** total of **2490 (1794)** reflections was recorded in **three** octants (the whole sphere) of the reciprocal lattice up to $2\theta = 65^{\circ}$ (84°). The data were averaged, and reflections with structure factors smaller than **3** standard deviations were omitted; **692 (373) F** values remained, which were used for the structure determinations. The inner R value was $R_i = 0.033$ (0.048).

The structure of $CeRhC₂$ was determined from Patterson and difference Fourier analyses. **A** full-matrix leastsquares program supplied by the Enraf-Nonius company was used to refine the structures. The atomic scattering $factors⁴⁰$ were corrected for anomalous dispersion.⁴¹ Weights were assigned according to the counting statistics, and a parameter accounting for the secondary extinction was refined and applied to the calculated structure factors. For both structures a series of least-squares cycles was run with simultaneous refinement of the occupancy and thermal parameters (with constant scale factors). The occupancy factors were **as** follows (in percent with standard deviations in the place value of the last quoted digit): Ce, **100.5 (2);** Rh, **99.2 (3); C(l), 89 (4); C(2), 88 (4);** Sm, **99.4** eters had the ideal values within **6** standard deviations. Even though at first sight the carbon atoms in $CeRhC₂$ have relatively low occupancy parameters, they are within only **3** standard deviations of their ideal values. Thus we can assume that both compounds are thermodynamically stable at their ideal compositions, especially also if we consider that the crystals for the structure determination were grown at high temperature from carbon-deficient samples. We therefore considered the least-squares refinements with the ideal occupancy values **as** the final ones. **(2); Rh, 101.7 (3); C, 102 (2). Thus all occupancy param-**

Since both structures are noncentrosymmetric, we **also** refined their enantiomeric forms by changing the *hkl* indices to $\hbar \bar{k}$. For the structure of CeRhC_2 this also necessitates the change from space group $P4_3$ to $P4_1$. The

Table IV. Atomic Parameters of CeRhC₂ and SmRhC₂^c

				CeRhC ₂		
atom	$P4_{2}$		x	ν	z	Pþ
Ce	4a		0.3485(2)	0.3517(2)	œ	0.343(8)
Rh	4а		0.1480(3)	0.1533(3)	0.59400(7)	0.63(1)
C(1)	4а		0.145(5)	0.165(4)	0.4605(8)	0.9(2)
C(2)	4a		0.150(6)	0.647(6)	0.637(1)	1.7(3)
				$SmRhC2$ (CeNiC ₂ Type Structure)		
atom		Amm2	x	y	z	R٥
Sm		2a		0	0°	0.322(7)

"Standard deviations in the least significant digit are given in parentheses. $\frac{b}{c}$ The last column contains the isotropic *B* value of **the carbon positions and the equivalent isotropic B value (X100 in units of nm2) of the anisotropic thermal parameters of the metal atom positions. Parameter held constant to pin the origin of the cell.**

Rh 2b $\frac{1}{2}$ 0 0.6243 (2) 0.49 (1)
C 4e $\frac{1}{2}$ 0.143 (2) 0.315 (1) 0.5 (1) 0.143 (2)

Figure **4. Crystal structure of CeRhCz. Heavy and light circles correspond to the heights of the** atoms in **the projection direction (in hundredths of the translation period** *a).* **On the left-hand side the bonds within the [RhC,]* polyanion are emphasized. The**

Figure. **5. Crystal structure and coordination polyhedra of the** CeNiC₂ type structure of SmRhC₂. The two-dimensionally infinite **network of rhodium and carbon atoms is indicated by** heavy **linea in the lower right-hand comer. The samarium atoms are above** and below at $\bar{x} = 0$.

resulting conventional residuals were both higher *(R* = **0.049** for both structures) than the ones for the correct polarity. These were $R = 0.037$ $(R_w = 0.029)$ for CeRhC₂ **(692** structure factors, **26** variable parameters) and R = 0.027 $(R_w = 0.023)$ for SmRhC₂ (373 *F* values, 12 variables). The atomic parameters and interatomic **distances are** listed

⁽⁴⁰⁾ Cromer, D. T.; Mann, J. B. Acta *Crystallogr.* **1968,** *A24,* **321. (41) Cromer, D. T.; Liberman, D.** *J. Chem. Phys.* **1970,53, 1891.**

Rare-Earth Metal Rhodium Carbides

Table **V.** Interatomic Distances (picometers) and Selected Interatomic Angles (degrees) in CeRhC₂ and SmRhC₂^o</sup>

$Ce-1C(1)$ $Ce-1C(1)$ $Ce-2C(2)$ $Ce-1C(1)$ $Ce-2C(2)$ $Ce-1C(1)$ Ce-1Rh Ce–1Rh $Ce-1Rh$ Ce–1Rh Ce–2Rh Ce-4Ce $\rm Ce\text{-}2\rm Ce$	278 (2) 281 (2) 286 (2) 287 (2) 287 (2) 290 (2) 310.3(2) 312.0 (2) 312.8(2) 314.5 (2) 317.8(1) 392.5(1) 399.2 (1)	$Sm-4C$ $_{\rm Sm-4C}$ $Sm-2Rh$ $Sm-4Rh$ $Sm-2Sm$ $Sm-4Sm$	274.1 (7) 281.9 (7) 305.1(1) 306.5 (3) 358.9 (1) 403.6 (1)
$Rh-1C(1)$ $Rh-1C(2)$ $Rh-1C(2)$ $Rh-1C(1)$ $Rh-1Ce$ $Rh-1Ce$ Rh-1Ce $Rh-1Ce$ $Rh-2Ce(1)$	204(1) 204 (2) 209 (2) 213(1) 310.3 (2) 312.0 (2) 312.8 (2) 314.5 (2) 317.8 (1)	$Rh-2C$ $Rh-2C$ $Rh-2Sm$ $Rh-4Sm$	209.3 (9) 213.9 (9) 305.1 (1) 306.5 (1)
$C(1)-1C(2)$ C(1)–1Rh $C(1)-1Rh$ $C(1)-1Ce$ $C(1)-1Ce$ $C(1)-1Ce$ $C(1)-1Ce$	139 (2) 204 (1) 213 (1) 278 (2) 281 (2) 287 (2) 290 (2)	$C-1C$ C–1Rh C–1Rh $_{\rm C-2Sm}$ $C-2Sm$	134 (1) 209.3 (9) 213.9 (9) 274.1 (7) 281.9 (7)
$C(2)-1C(1)$ $C(2)-1Rh$ $C(2)-1Rh$ $C(2)-2Ce$ $C(2)-2Ce$	139 (2) 204(2) 209(2) 286 (2) 287 (2)		
$C(1)$ -Rh- $C(2)$ $C(1)$ -Rh- $C(2)$ $C(1)$ -Rh- $C(2)$ $C(1) - Rh - C(2)$ $C(1)$ -Rh- $C(1)$ $C(2)$ -Rh- $C(2)$	38.5 (6) 107.3 (7) 104.7(7) 109.5(7) 147.9 (7) 143.2 (6)	C – Rh – C C-Rh-C C-Rh-C C-Rh-C	36.5(3) 106.5(3) $108.5(3)(2\times)$ 145.0 (5) $(2 \times)$
$Rh-C(1)-Rh$ $Rh-C(1)-C(2)$ $Rh-C(1)-C(2)$ $Rh-C(2)-Rh$ $Rh-C(2)-C(1)$ $Rh-C(2)-C(1)$	147 (1) 69(1) 143 (1) 143 (1) 72 (1) 145(1)	$Rh-C-Rh$ $Rh-C-C$ Rh-C-C	145.0 (5) 71.8 (5) 143.3 (7)

'All distances shorter than 440 pm (Ce-Ce, Sm-Sm, Ce-Rh, are listed. Of the interatomic angles only those between the strongly bonded atoms within the polyanions are given. Standard deviations, computed from those of the lattice constants and the positional parameters, are given in parentheses in the position of the least significant digit.

in Tables **IV** and **V.** The crystal structures and coordination polyhedra are shown in Figures **4** and **5.** The tables with the anisotropic thermal parameters of the metal atoms and the observed and calculated structure factors are available as supplementary material.

Discussion

The tetragonal crystal structure of $\mathrm{LaRh}\mathrm{C}_2$ and $\mathrm{CeRh}\mathrm{C}_2$ is closely related to the orthorhombic $CeNiC₂$ and monoclinic $CeCoC₂$ type structures which occur for the ternary cobalt and the other rhodium carbides with this composition (Figure 6). All these structures may be thought **of** as being composed of trigonal prisms of rare-earth metal atoms, which are packed in different ways (Figure **7).** The prisms are filled by equal amounts of transition-metal atoms (T) and C_2 pairs. Considering the large differences in electronegativities the rare-earth metal atoms may be considered to have donated their valence electrons to the

Figure **6.** Cell volumes of rare-earth metal cobalt and rhodium carbides with CeRhC₂, CeNiC₂, and CeCoC₂ type structure. For comparison only half the cell volumes are plotted for the CeRhC_2 and $CeCoC₂$ type carbides. The data for the cobalt containing carbides are from ref 22.

Figure **7.** Structural relationships of the three structure types $CeRhC_2$, $CeNiC_2$, and $CeCoC_2$. The three structures may be considered to be composed of trigonal prisms of the Ce atoms (large circles) which are stacked in different ways. **Half** of these prisms contain the C_2 pairs, the other half the transition-metal atoms, which are not shown.

Figure 8. Crystal structure of $CeCoC₂$. The three-dimensionally infinite network of the $(CoC_2)^3$ - polyanion is emphasized.

 $(TC₂)³⁻$ polyanions. These polyanions form two-dimensionally infinite sheets in the $CeNiC₂$ type structure (Figure **5),** while they form three-dimensional networks in the CeRhC₂ (Figure 4) and CeCoC₂ (Figure 8) structures.

Figure 9. Near-neighbor environments within the polyanions of three carbides RTC_2 with three different structure types. Although the T and C atoms form different infinite two- and three-dimensional nets, the shown sev

From Figure **6** we conclude that the cerium atoms in CeRhC₂ are trivalent (a much smaller cell volume would be expected for a Ce^{IV} compound). Thus the differences in the near-neighbor environments of $CeRhC₂$ and Sm- $RhC₂$ can be ascribed to the different sizes of the Ce and Sm atoms. The numbers and kinds of nearest neighbors are the same in both structures (Table V). The largest differences in interatomic distances occur for the shortest $(nonbonding)$ R-R distances: 392.5 pm in $CeRhC₂$ vs 358.9 pm in $SmRhC₂$. This may well be the most important reason for the change in structure. There are no bonding Rh-Rh interactions in either structure. The average Ce-Rh distance **(314.2** pm) is slightly greater than the average Sm-Rh distance **(305.8** pm). This difference is about the same **as** the difference in the ionic radii **(111** pm for Ce3+ and **104** pm for Sm3+) and much smaller than the difference in the metallic radii for coordination number **12 (181** pm for Ce vs **166** pm for Sm).

The positions of the light carbons atoms have relatively large standard deviations of the order of **1-2** pm. However, since each C₂ pair is surrounded by three Rh atoms (Figure **9),** the *average* Rh-C bond distance is more reliable. Interestingly, these distances are greater in $SmRhC₂$ (which has the smaller cell volume per formula unit) than in CeRhC2: **211.6** vs **207.5** pm. Thus the carbon atoms are more strongly bonded to the Rh atoms in $CeRhC₂$ than in SmRhC₂. Since the total "bond strength" of a carbon atom in the two structures may be considered to be equal, this correlates with the shorter C-C distance of **134** pm in SmRhC₂ vs 139 pm in CeRhC₂. Both distances are close to a C-C double bond $(135 \text{ pm in } C_2H_4)$. This is not reflected by the hydrolyses products. The hydrolyses of such ternary carbides are complex heterogeneous processes.²⁴ To our knowledge only Al_4C_3 and CaC_2 give pure gaseous products $(CH_4$ and C_2H_2 , respectively).

The diamagnetism of LaRhC_2 and the fact that the other $RRhC₂$ carbides have magnetic moments that correspond to those of the R^{3+} ions indicate that the $(RhC_2)^{3-}$ polyanions are magnetically saturated. The increase in the electrical conductivity with temperature as observed for our samples of LaRhC_2 and CeRhC_2 even suggests a bandgap between occupied bonding and unoccupied antibonding states. $31,42$ In the absence of band structure

calculations one may speculate about the change from the semiconducting behavior of the La and Ce compound to the metallic behavior of the other $LnRhC₂$ carbides. This change could be due to the decrease in the electropositivity (and in the gradual closing of the bandgap) in the direction from La and Ce to Pr, Nd, Sm, and/or it could be due to the structural change with the differences in the Rh-C and C-C bonding as discussed above. For a more thorough discussion of the chemical bonding of these carbides, electrical conductivity data established from measurements of single crystals would be desirable. It is unfortunate that today the art of growing single crystals is much less advanced than the science of structure determination. Professor Reginald Gruehn, to whom this paper is dedicated, is contributing to close this gap.

Acknowledgment. We are indebted to Th. Vomhof for the magnetic susceptibility measurements. Dr. M. H. Moller and U. Rodewald collected the single-crystal diffractometer data. K. Wagner characterized our samples with a scanning electron microscope. We also want to thank Prof. J. Grobe and his co-workers **for** their help and advice with the gas chromatographic analyses. Dr. R. Schwarz (Degussa AG) and Dr. G. Höfer (Heraeus Quarzschmelze) have both supported our work with their generous supply of rhodium metal and silica tubes. The arc-melting furnace was provided by the Deutsche Forschungsgemeinschaft, and relevant chemical literature was purchased by the Fonds der Chemischen Industrie.

Registry **No.** La, 7439-91-0; Ce, 7440-45-1; Pr, 7440-10-0; Nd, 7440-00-8; Sm, 7440-19-9; Rh, 7440-16-6; La $\rm RhC_2$, 115805-13-5; $CeRhC_2$, 53262-56-9; $PrRhC_2$, 115805-11-3; $NdRhC_2$, 115805-12-4; $n\text{-C}_4\text{H}_{10}$, 106-97-8; $n\text{-C}_5\text{H}_{12}$, 109-66-0; $i\text{-C}_4\text{H}_{10}$, 75-28-5; $i\text{-C}_5\text{H}_{12}$, 78-78-4; C_2H_2 , 74-86-2; C_3H_6 , 115-07-1; C_2H_4 , 74-85-1; graphite, 7782-42-5; hexane, 110-54-3. $SmRhC_2$, 115710-23-1; CH₄, 74-82-8; C₂H₆, 74-84-0; C₃H₈, 74-98-6;

Supplementary Material Available: Tables of the thermal ellipsoid parameters for the atoms of CeRhC₂ and SmRhC₂ (1) page) and of the observed and calculated structure factors for $CeRhC_2$ and $SmRhC_2$ (6 pages). Ordering information is given on any current masthead page.

⁽⁴²⁾ Li, **J.; Hoffmann, R.** *Chem. Mater.* **1989,1, 83.**